Adhesion Tests of Candidate Backsheets and Encapsulants

Gary Jorgensen, John Pern, Joe DelCueto, Steve Glick, Kent Terwilliger, Tom McMahon

Thin Film Module Reliability Team Meeting Golden, CO; June 23-24, 2004

Materials: Encapsulants			
EVA (STR 15295P)			
Modified EVAs			
EPDM (BRP)			
Silicones identified last meeting			
THV			
Others			

Materials:			
Encapsulants			
Backsheets			
EVA (STR 15295P)			
Modified EVAs			
EPDM (BRP)			
Silicones identified last meeting			
THV			
Others			
NREL PE-CVD coated PET			
AKT PE-CVD coated PET			
PNNL multi-layer coated PET			
Isovolta coated laminates			
Others (Al foil laminate, LCP, +)			

Materials:			
Encapsulants (E)			
Backsheets (B)			
Combined B + E			
EVA (STR 15295P)			
Modified EVAs			
EPDM (BRP)			
Silicones identified last meeting			
THV			
Others			
NREL PE-CVD coated PET			
AKT PE-CVD coated PET			
PNNL multi-layer coated PET			
Isovolta coated laminates			
Others (Al foil laminate, LCP, +)			
Combined B + E			

Summary of Materials & Tests as I(exposure)						
Materials: Encapsulants Backsheets Combined B + E	Scotch Tape Peel Test	90°/180° Peel Strength	Lap Shear Strength	WVTR	Corro -sion Protec -tion	
EVA (STR 15295P)						
Modified EVAs						
EPDM (BRP)						
Silicones identified last meeting						
THV						
Others						
NREL PE-CVD coated PET						
AKT PE-CVD coated PET						
PNNL multi-layer coated PET						
Isovolta coated laminates						
Others (Al foil laminate, LCP, +)						

Combined B + E

Summary of Materials & Tests as f(exposure)						
Materials: Encapsulants Backsheets Combined B + E	Scotch Tape Peel Test	90°/180° Peel Strength	Lap Shear Strength	WVTR	Corro -sion Protec -tion	
EVA (STR 15295P)		Gary	Mike			
Modified EVAs		Gary				
EPDM (BRP)			Mike	Mike		
Silicones identified last meeting			Mike	Mike		

Gary

Gary

Gary

Mike

Kent

Kent

Kent

Kent

Kent

Kent

Gary

Gary

Gary

Gary

Gary

THV

Others

NREL PE-CVD coated PET

AKT PE-CVD coated PET

Isovolta coated laminates

Combined B + E

PNNL multi-layer coated PET

Others (Al foil laminate, LCP, +)

Acknowledgements

- John Pern (NREL): EVA / primed glass substrate samples and alternate encapsulants
- Joe DelCueto and Steve Glick (NREL): PE-CVD coated PET backsheets
- AKT: PE-CVD coated PET backsheets
- Larry Olson (PNNL): multilayer coated PET backsheets
- George Bukovinszky (First Solar): Isovolta backsheets
- Stan Levy: Experimental laminate backsheet; THV

Encapsulants

- Silane adhesion promoters screened
 - Use candidate formulations to prime glass substrates
 - Construction = TPE / EVA / Primed glass
 - Measure 90° peel strength between EVA and glass as function of damp heat exposure
- Alternate encapsulants also evaluated

Screening of Silane Adhesion Promoters

	cening o	1 Shane	Auncsion			
Sample ID	Base Silane	Silane 2 (S2)	Silane 3 (S3)	S2 (%)	S3 (%)	
Control (EVA 15295P self-priming encapsulant only; no glass priming treatment)						
Z-6030-A	Z-6030	N/A	N/A	0	0	
Z-6030-B	Z-6030	Amino-	N/A	25	0	
Z-6030-C	Z-6030	Vinyl-	N/A	x	0	
Z-6030-D	Z-6030	Dipodal	N/A	x	0	
Z-6030-E	Z-6030	Fluoro-	N/A	x	0	
Z-6030-F	Z-6030	Vinyl-	Amino-	х	5	
Z-6030-G	Z-6030	Fluoro-	Amino-	x	5	
Z-6030-H	Z-6030	Dipodal	Amino-	x	5	
Z-6030-I	Z-6030	Ероху-	Amino-	x	У	
Z-6030-J	Z-6030	Fluoro-	Dipodal	x	У	
Z-6030-K	Z-6030	Diamino-	N/A	25	0	
Z-6030-L	Z-6030	Phenyl-	N/A	25	0	
Z-6030-M	Z-6030	Phenyl-	Diamino-	25	5	
Z-6030-N	Z-6030	Phenyl-	Diamino-	25	10	
Z-6030-O	Z-6030	Phenyl-	Diamino-	25	25	
Z-6030-P	Z-6030	Phenyl-	Diamino-	50	10	
Z-6030-Q	Z-6030	Phenyl-	Diamino-	75	10	
Z-6030-R	N/A	Phenyl-	Diamino-	90	10	
Z-6030-S	Z-6030	Phenyl-	Dipodal	x	у	
Z-6032-A	Z-6032	Vinyl-	Amino-	х	у	
Z-6032-B	Z-6032	Dipodal	Amino-	x	у	
Z-6032-C	Z-6032	Vinyl-	Diamino-	x	у	
Z-6032-D	Z-6032	Phenyl-	Diamino-	x	у	

90° Peel Strength of EVA / Primed Glass Interface as a Function of Damp Heat Exposure

Analysis of Silane Primer Data

Use Time-Averaged Peel Strength as measure of adhesion:

$$\hat{S}_p = \frac{\int_0^{t_{max}} S_p(t) dt}{\int_0^{t_{max}} dt}$$

Can then define a test criterion that depends on the estimated standard deviation (σ) of the acquired data and the percentiles of the studentized range (q):

$$w = \frac{q_{1-\alpha} \cdot \sigma}{\sqrt{n}}$$

For n = 13 treatments to be compared and $\alpha = 0.99$ (99% confidence level), w = 1.29

Effectiveness of Silane Primers

Primer	Rank	$\hat{S_p}$	$\Delta \hat{S}_p$	Cum $\Delta \hat{S}_p$	Cum $\Delta \hat{S}_p$
Z6030-J	1	9.56	0.24	2.8	1.18
Z6030-C	2	9.32	0.05	2.56	0.94
Z6032-B	3	9.27	0.12	2.51	0.89
Z6032-A	4	9.15	0.32	2.39	0.77
Z6030-E	5	8.83	0.17	2.07	0.45
Z6030-G	6	8.66	0.26	1.9	0.28
Z6030-I	7	8.4	0.02	1.64	0.02
Z6030-D	8	8.38	0.46	1.62	w = 1.2
Z6030-F	9	7.92	0.34	1.16	
Z6030-A	10	7.58	0.25	0.82	
Z6030-H	11	7.33	0.4	0.57	
Z6030-B	12	6.93	0.17	0.17	
Control	13	6.76			

Test Results for Primed Glass Samples

- Primed glass samples Z6030-A, B, F, and H indistinguishable from the control
- Primed glass samples Z6030-C, D, E, G, I, and J + Z6032-A and B are improved compared with the control
- Ranking among improved samples is not statistically significant
- Peeling of samples Z6030-J and Z6032-A and B did not initiate at glass interface, even after 775 h damp heat exposure

Glass Substrate Cleaning

- Studied effect of glass substrate cleaning procedure on adhesion to 15295P EVA
 - Isopropyl alcohol + Billco (pH ~ 5.5 -5.9) wash
 - Liqui-Nox + EtOH + HCl/MeOH + H₂SO₄
- Measured contact angles of cleaned glass
 - Billco $\sim 52^{\circ}$
 - Acids $\sim 5^{\circ}$
- After almost 500 h damp heat exposure, no difference in peel strength of EVA/Glass interface

90° Peel Strength of STR EVA / Glass Interface for 2 Cleaning Methods as a Function of Damp Heat Exposure

Alternate Encapsulants

- NREL-prepared alternate encapsulant formulations are also being tested
 - EVA
 - Ethylene copolymer of methacrylate with glycidyl functional groups
 - Various silanes incoporated
- Some materials similar or inferior in performance to STR's 15295P EVA
- One material (PMG-K, D6-2) very promising; no peel initiation after 743 h damp heat exposure

90° Peel Strength of Alternate Encapsulant / Glass Interface as a Function of Damp Heat Exposure

Testing Effectiveness of Backsheets

- NREL PE-CVD coated PET
- AKT PE-CVD coated PET
- PNNL multilayer coated PET
- Isovolta coated laminates
- PEN / Al / PET laminate

Construction of Coated PET Peel Strength Test Samples

Construction of Commercial Backsheet Peel Strength Test Samples

NREL PE-CVD Coated PET

- NREL PE-CVD system activated
- Several coated PET samples have been prepared
- Coatings pass initial tape peel test but fail with damp heat exposure
- Adhesion of coating laminated to EVA high at t=0 but delaminates with damp heat exposure
- Continuing to explore effect of process parameters on stoichiometry, morphology, adhesion, and moisture transport properties

AKT PE-CVD Coated PET

- AKT provided 10 new PE-CVD coated PET samples
 - SiN_x vs. SiON_x
 - Different thicknesses
 - Different surface pre-treatments
- 3 samples passed tape peel test up to 612 h damp heat exposure; 2 still pass after >1250 h

PNNL Multilayer Coated PET

- Multilayer = oxide / acrylate
- 3- and 5-multilayer coated PET samples received
- Both multilayer coatings pass the tape peel test up to 634 h of damp heat exposure (fail after 967 h)
- Multilayer coated PET does not laminate to EVA; problem being investigated

Construction of sample with n-multilayer coating:

Isovolta Coated Laminate Backsheets

- Three materials tested
 - PVF-PET-PVF-treatment (Isosolar 2442)
 - PVF-SiO_x-PET-primer (Isosolar 2836)
 - PVF-Al-PET-primer (Isosolar 2116)
- Interested in how well the backsheet protects the EVA/Glass interface during damp heat exposure
- Isosolar 2836 provides best long term protection (although ~26% loss in peel strength after 1500 hours exposure)
- Isosolar 2442 exhibits interlayer delamination with damp heat exposure

180° Peel Strength of EVA/Glass Interface (with Isovolta Backsheets) as a Function of Damp Heat Exposure

DuPont Teijin Experimental Laminate

- Construction = PEN / Al foil / Treated PET
- Outstanding moisture barrier properties
- Interested in how well the backsheet protects the EVA/Glass interface during damp heat exposure
- Excellent adhesion after 25 h exposure; peel strength degrades thereafter
- Delamination of treated PET from EVA after 514 h exposure

180° Peel Strength of EVA/Glass Interface (with DuPont Teijin Experimental Laminate Backsheet) as a Function of Damp Heat Exposure

Conclusions / Future Work

- Silane primers identified that enhance EVA adhesion to glass during damp heat exposure
 - Need to compound primers into EVA for further testing
- Standard industry glass cleaning procedure comparable to acid cleaning
- Improvements required for advanced coated PET backsheets
 - Efforts in early stages; need time to progress
- Several industry-provided backsheets (commercial and experimental) evaluated
 - Different levels of moisture ingress protection provided
 - Additional development could produce improved products